Susceptibility of coxsackievirus B3 laboratory strains and clinical isolates to the capsid function inhibitor pleconaril: antiviral studies with virus chimeras demonstrate the crucial role of amino acid 1092 in treatment.
نویسندگان
چکیده
OBJECTIVES At present, most promising compounds to treat enterovirus-induced diseases are broad-spectrum capsid function inhibitors which bind into a hydrophobic pocket in viral capsid protein 1 (VP1). Coxsackievirus B3 (CVB3) Nancy was the only prototypic enterovirus strain shown to be pleconaril-resistant. This study was designed to better understand the polymorphism of the hydrophobic pocket in CVB3 laboratory strains and clinical isolates and its implications for treatment with the capsid function inhibitor pleconaril. METHODS Pleconaril susceptibility was determined in cytopathic effect-inhibitory, plaque reduction or virus yield assays. Sequence analysis of the genome region coding for VP1 and/or subsequent alignment of amino acids lining the hydrophobic pocket of five CVB3 laboratory strains and 20 clinical isolates were carried out. Virus chimeras and computational analysis were used to prove the role of amino acid 1092. RESULTS AND CONCLUSIONS Despite high conservation of pocket amino acids, polymorphism was detected at positions 1092, 1094 and 1180. Neither Pro-1094-->Thr nor Val-1180-->Ile altered efficacy of pleconaril treatment. But the amino acid at position 1092 was strongly associated with susceptibility of CVB3 to the capsid inhibitor. Whereas leucine was involved in resistance, isoleucine and valine were detected in pleconaril-susceptible CVB3. Results from antiviral assays with hybrid viruses demonstrate the crucial role of amino acid 1092 in pleconaril susceptibility. A resistant cDNA-generated CVB3 became pleconaril-susceptible after accepting parts from the genome region encoding Ile-1092 into its capsid. Computational analysis suggests that conformational changes in the hydrophobic pocket occur when leucine is substituted for isoleucine or valine and that this change leads to susceptibility to pleconaril.
منابع مشابه
Activity of pleconaril against enteroviruses.
The activity of pleconaril in cell culture against prototypic enterovirus strains and 215 clinical isolates of the most commonly isolated enterovirus serotypes was examined. The latter viruses were isolated by the Centers for Disease Control and Prevention during the 1970s and 1980s from clinically ill subjects. Pleconaril at a concentration of </=0.03 microM inhibited the replication of 50% of...
متن کاملVP1 sequencing of all human rhinovirus serotypes: insights into genus phylogeny and susceptibility to antiviral capsid-binding compounds.
Rhinoviruses are the most common infectious agents of humans. They are the principal etiologic agents of afebrile viral upper-respiratory-tract infections (the common cold). Human rhinoviruses (HRVs) comprise a genus within the family Picornaviridae. There are >100 serotypically distinct members of this genus. In order to better understand their phylogenetic relationship, the nucleotide sequenc...
متن کاملCoxsackievirus B3 protease 3C induces cell death in eukaryotic cells
Abstract: Coxsackievirus B3 (CVB3) is the most common agent known to cause viral myocarditis. The viral genome encodes a single polyprotein that is cleaved to produce several proteins by virally encoded proteases. Most of this proteolytic processing is catalyzed by a cysteine protease called 3C. The 3C protease plays major role in viral replication and cellular damage. To understand the mecha...
متن کاملAttenuated virulence of pleconaril-resistant coxsackievirus B3 variants.
Pleconaril (VP 63843) is a novel orally bioavailable small molecule with broad antipicornavirus (enterovirus and rhinovirus) activity. Ten independently derived pleconaril-resistant variants of coxsackievirus B3 were isolated from cell culture. The molecular basis of drug resistance and the biologic properties of the drug-resistant viruses were investigated. RNA sequence analysis revealed amino...
متن کاملNovel [(biphenyloxy)propyl]isoxazole derivatives for inhibition of human rhinovirus 2 and coxsackievirus B3 replication.
OBJECTIVES During this study, novel biphenyl derivatives were synthesized and tested for antiviral activity. METHODS A new method based on the Suzuki coupling reaction has been established for the synthesis of these polysubstituted chain systems. In parallel with cytotoxicity, the antiviral activity of biphenyl derivatives has been determined in cytopathic effect (CPE)-inhibitory assays with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of antimicrobial chemotherapy
دوره 56 4 شماره
صفحات -
تاریخ انتشار 2005